Interférométrie radar appliquée à l'étude des séismes: apport des données de la constellation Sentinel-I

Raphaël GRANDIN

grandin@ipgp.fr

Marie-Pierre Doin, Yann Klinger, Cécile Lasserre, Robin Lacassin, Marianne Métois, Martin Vallée

Séisme de Landers, CA, 1992, Mw7.3

NIERMANOWAKWERKAZOURNAL OFSCIENCE.

Image of an earthquake

See Harris and Sectors Collider Last OCC
Recollect Last de Construction (Collider Last de Collider Last de Collider

Massonnet et al., 1993

Déformation élastique cosismique

Ce qui a changé depuis Landers...

Découverte de nouveaux phénomènes sismiques

Grands séismes (subduction) Petits séismes Post-sismique Inter-sismique Transitoires Difficultés pour l'InSAR

Bruit atmosphérique (turbulence, stratification) Distortions ionosphériques Perte de cohérence temporelle

Besoins

Haute résolution spatiale Fauchée large <u>Temps de revisite raccourci</u> Faible ligne de base spatiale Diversité géométrique

Concept de la mission Sentinel-I

SAR en bande C, dual-polarisation

Tube orbital diamètre < 200m

Cycle de 12 jours

Constellation de 2 satellites : SIA (2014) et SIB (2016) ... +SIC +SID !

Acquisitions systématiques

Temps réel (~3h)

Données en libre accès

Sentinel-I : un seul mode d'acquisition

Priorité : fréquence de revisite

Sentinel-1A – 22 sept. @18 oct. 2016

30 acquis./an en Europe!

60 acquis./ an avec SIB!

Cycle : 12 jours

Mode d'acquisition TOPS

Rotation du faisceau

périodique en portée (cycle=3s) progressive en azimuth

Mode d'acquisition TOPS

- I'InSAR requiert une parfaite synchronisation en vol (~10 ms ⇔7m)
- focalisation plus complexe (variations du Doppler en fonction de l'azimuth)
- <u>requiert une coregistration parfaite</u> (<u>rampe de phase en azimuth</u>)

Intérêts

- mode wide-swath
- les cibles sont toujours « vues » par le centre du faisceau ⇒ meilleure radiométrie
- bursts plus longs ⇒ moins de temps de latence entre les bursts

Effet d'une petite erreur de coregistration

Référence

Erreur de positionnement de 0.1 pixel en azimut

Différence

Phase

Coregistration précise : diversité spectrale

Avant correction

Après correction

Diversité spectrale

Différence

European Data Relay System (EDRS)

2 satellites en orbite géostationnaire: EDRS-A: 09°E (2016) EDRS-C: 31°E (2018)

EDRS-A & -C

user data

EDRS GROUND SEGMENT

TERRESTRIAL NETWORK

MOC & BMOC

Exchange of link planning & user data

user data

COPERNICUS SENTINEL SYSTEM

Comm. inter-sat. laser @ 1.8Gb/s

Trois séismes récents

Séisme du Népal, 25 Avril 2015 (Mw7.9)

Estimation rapide des dégâts

Interferométrie wide-swath

Couplage géodésie - sismologie

Séisme d'Illapel (Chili), Septembre 2015 (Mw8.3) Grandin et al., 2016

Séisme d'Illapel (Chili), Septembre 2015 (Mw8.3) Grandin et al., 2016

TOPS: Terrain Observation by Progressive Scans

De Zan et al., 2006 ; Prats et al., 2012

Diversité spectrale dans les zones de recouvrement de bursts

Interférogramme « avant »

Interférogramme « arrière »

Double différence

 $\Delta \Psi_{ovl} = 1^{\circ}$

$$\begin{split} \Delta \Phi_{\rm ovl} &= \left(\Delta \Phi_{\rm fw} - \Delta \Phi_{\rm bw} \right) = \frac{4\pi}{\lambda} \vec{u}_{\rm displ.} \left(\vec{k}_{\rm fw} - \vec{k}_{\rm bw} \right) \\ &= \frac{4\pi}{\lambda} \Delta x_{\rm az} \,. \left| |\vec{j}_{\rm diff}| \right| \\ \text{with} \quad : \quad \vec{j}_{\rm diff} = \vec{k}_{\rm fw} - \vec{k}_{\rm bw} \approx \Delta \Psi_{\rm ovl} \,. \, \vec{j}_{\rm along-track} \end{split}$$

Utilisation de la phase

Annulation des délais atmosphériques

Diversité spectrale dans les zones de recouvrement de bursts

Champ de déplacement 3D

Validation avec le GPS : précision < 10 cm !

Séisme de l'Oklahoma, M5.7, Septembre 2016

see also Walsh & Zoback, 2015 and many others

Une sismicité induite par l'activité pétrolière

En Oklahoma, la production consiste en 90% **d'eau** – 10% **d'huile**

- > Saumure contenant des polluants (As...)
- > Ré-injectée dans des roches poreuses à la base de la pile sédimentaire, juste au dessus du socle cristallin

Rubinstein & Mahani, SRL 2016

Traitement InSAR multi-temporel

Soft: NSBAS (ISTerre/IPGP)

Extraction du signal cosismique « caché » sous l'atmosphère

Un séisme « profond » induit par une perturbation « superficielle »

Le mot de la fin

Le satellite Sentinel-1 délivre depuis 3 ans des images d'une qualité sans précédent.

Les acquisitions systématiques permettent de construire une archive dense, en peu de temps, y compris dans les régions peu étudiées jusqu'à présent.

De nombreuses découvertes en perspective dans les années à venir !