-- Colloque SFPT, jouirnée du 31 mai 2017 --

Apport des futures données SAR bande P multi-baselines : la mission **BIOMASS**

Ludovic Villard, Yassine Letaief, Dinh Ho Tong Minh⁽²⁾, Thierry Koleck* & Thuy Le Toan *today's presenter (1) Centre d'Etudes Spatiales de la Biosphère - CNRS, UPS, CNES, IRD -18 av. Edouard Belin, 31401 Toulouse (France) http://www.cesbio.ups-tlse.fr (2) IRSTEA, UMR TETIS IRSTEA-CIRAD-ENGREF

Centre d'Etudes Spatiales

de la **BIO**sphère **Toulouse – France**

Outline

- Overview of the Biomass mission key studies & current research priorities
- Interest of P-band PolSAR data for dense forests remote sensing
- Capabilities of the multi-baseline configuration

D: Processor implementation & Testing

E:Exploitation

CESBIO

Feasibility of concepts

Phase A science activities: enrich the set of exp. data

Essentially driven by ESA/CNES airborne/ground based campaigns:

- BioSAR 1,2 & 3 (Airborne SAR / Sweden / 2007,8 & 2012)
- > TropiSAR (Airborne SAR / French Guiana / 2009)
- > TropiScat (Scatterometer / French Guiana / 2011-2014)
- AfriScat (Scatterometer / Ghana / 2015-2017)
- > AfriSAR (Airborne SAR / Gabon / Jui,Feb 2016)

BIOMASS products to answer its scientific objectives

Forest biomass

Forest height

Disturbances

Above-ground biomass (tons/hectare)

ss Upper canopy height (meter)

Areas of forest clearing (hectare)

- 200 m resolution
- 1 map every 6 months
- global coverage of forested areas
- accuracy of 20%, or 10 t ha⁻¹
 ¹ for biomass < 50 t ha⁻¹

- 200 m resolution
- 1 map every 6 months
- global coverage of forested areas
- accuracy of 20-30%

- 60×50 m resolution
- 1 map every 6 months
- global coverage of forested areas
- 90% classification accuracy

CESBIO

BIOMASS products to answer its scientific objectives

Level 1:

- 1. Level-1a: SLCs
- 2. Level-1b: geocoded, multi-looked

Level 1.5:

- 3. SLC stacks (co registered and ionosphere corrected)
- 4. Tomographic Cubes

Level 2 (under definition)

- 5. Biomass based on a SLC triplet
- 6. Forest height based on a SLC triplet
- 7. Disturbance based on a SLC triplet

Level 3 (under definition)

- 8. Global Biomass Mosaic (every 7.2 month)
- 9. Global Forest height Mosaic (every 7.2 month)
- **10**. Global Disturbance Mosaic (every 7.2 month)

Biomass key facts

- ✓ Single satellite, 5 years lifetime
- P-band (435 MHz) Synthetic Aperture Radar (SAR)
- ✓ Full polarimetric (HH, HV, VV)
- ✓ 6 MHz bandwidth
- ✓ Level 1: 60 x 50 m² resolution
- Multi-pass interferometry with a 3 days repeat cycle
- Two mission phases: Tomography (14 monts), Interferometry (year 2-5)

CESBID

Overview of the mission time-line

CESBID

Overview of the mission time-line

Outline

- Overview of the Biomass mission key studies & current research priorities
- Interest of P-band PolSAR data for dense forests remote sensing
- Capabilities of the multi-baseline configuration

Specificity of the HV polarization

- How comes depolarization ?
- Resulting relation between cross-pol (HV) backscatter & vegetation biomass

PolSAR based indicator to cope with the saturation issue

 $\gamma_{hv}^{0}[dB], t^{0}[dB], h[m] = a_{1} \cdot \log_{10}(AGB[t/ha]) + a_{0}$

CESBIO

Key features behind scattering mechanisms:

- Geometry (dimensions/orientations of scatterers in addition to bulk effects) with respect to the wavelength
- Dielectric constant of the material (frequency dependent, and mainly driven by water content)

PolSAR acquisition: beyond the HV backscatter

 $\left[\varphi_{P}\right] = \left\{\sqrt{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \sqrt{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right\}$

 $k_{p} = \frac{1}{\sqrt{2}} \begin{vmatrix} S_{hh} + S_{vv} \\ S_{hh} - S_{vv} \\ 2 S_{hv} \end{vmatrix}$

Based on the Pauli decomposition of the scattering matrix, the PolSAR information is commonly formulated with the coherency matric [T]

$$T = \langle k_{p} k_{p}^{t} \rangle = \frac{1}{2} \begin{bmatrix} \langle (S_{hh} + S_{vv})(S_{hh} + S_{vv})^{i} \rangle & \langle (S_{hh} + S_{vv})(S_{hh} - S_{vv})^{i} \rangle & 2 \langle (S_{hh} + S_{vv})S_{hv}^{i} \rangle \\ \langle (S_{hh} - S_{vv})(S_{hh} + S_{vv})^{i} \rangle & \langle (S_{hh} - S_{vv})(S_{hh} - S_{vv})^{i} \rangle & \langle (S_{hh} - S_{vv})S_{hv}^{i} \rangle \\ 2 \langle S_{hv}(S_{hh} + S_{vv})^{i} \rangle & 2 \langle S_{hv}(S_{hh} - S_{vv})^{i} \rangle & 4 \langle S_{hv}S_{hv}^{i} \rangle \end{bmatrix}$$

from which the real diagonal terms represent the backscattering power, and the off diagonal terms the correlation between polarizations, from which scattering symmetries can be derived:

Composite RGB image resulting from the Pauli decomposition (<HH-VV>, <HV>, <HH+VV>)

PolSAR based indicator : the **t**^o coefficient

Scattering matrix

Coherency matrix

Optimal Polarisation Orientation Angle

Non-linear optimisation technique to minimize

CESBIO

$$\mathcal{F} = |t_{13}^{\Theta}|^2 + |t_{23}^{\Theta}|^2$$
$$t_{11}^{\theta} = t_{11}$$
$$t_{13}^{\theta} = -t_{12} \cdot \sin 2\theta + t_{13} \cdot \cos 2\theta$$
$$t_{23}^{\theta} = -t_{23}^* \cdot \sin^2 2\theta + t_{23} \cdot \cos^2 2\theta + \frac{1}{2}(t_{33} - t_{22}) \cdot \sin 4\theta$$
$$t_{33}^{\theta} = \frac{1}{2}(t_{33} + t_{22}) + \frac{1}{2}(t_{33} - t_{22}) \cos 4\theta - \Re(t_{23}) \sin 4\theta$$
$$t_{22}^{\theta} = SPAN - t_{11}^{\theta} - t_{33}^{\theta}.$$

*L. Villard et al. 'Biomass indicator for Tropical Dense Forests over Hully terrains from P-band SAR intensity : γ^0 or t^0 ?', Jan 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (JSTARS).

PolSAR based indicator : the **t**^o coefficient

PolSAR based indicator : the **t**^o coefficient

What we learn & develop from TropiSAR data

Topographic effects originate important dispersion regarding the backscatter sensitivity to AGB for high biomass values (> 200 t/ha),

→ standard backscattering coefficients are poorly correlated to AGB

To remove these perturbations and recover sensitivity to biomass, the ad-hoc PolSAR backscatter coefficient t^o has been developed

Outline

- Overview of the Biomass mission key studies & current research priorities
- Interest of P-band PolSAR data for dense forests remote sensing
- Capabilities of the multi-baseline configuration

Acquisitions modes

These capabilities enable to increase the set of observations, in order to enhance the underlying physical information

PolInSAR acquisitions

PolInSAR configuration defined by the baseline, and the type of acquisitions : repeat-pass or bistatic

$$h_a = \frac{\lambda \cdot R \cdot \sin(\theta_i)}{2b_n}$$

Phase center height given by:

$$h_z = \frac{\varphi_{12}}{2\pi} h_a$$

How to get vegetation height from the phase center height ?

TomoSAR acquisitions

TomoSAR based results from TropiSAR data

D. Ho Tong Minh et al., Remote Sensing of Environment 175 (2016) 138–147

TomoSAR based results from TropiSAR data

D. Ho Tong Minh et al., Remote Sensing of Environment 175 (2016) 138-147

TomoSAR based results from TropiSAR data

D. Ho Tong Minh et al., Remote Sensing of Environment 175 (2016) 138-147

Given these (airborne) results, why not using AGB directly as initial guest and focus on changes with PolSAR/PolInSAR ?

Temporal decorrelation analysis from tower based scatterometers

CESBIO

Temporal decorrelation analysis from tower based scatterometers HV Tropiscat –Afriscat temporal coherences, 6 am, dry period (top) vs rainy period (bottom)

Biomass mission scenario: Probabilities to get at least one pair (optimal for PolInSAR) with γ(t,t+3) > [0.8,0.9] with N acquisitions (from AfriScat statistical results at 6 am±30min, for dry & rainy periods)

Event "E08": "at least one $\gamma(t,t+3) \ge 0.8$ " Event "E08": "all pairs \ $\gamma(t,t+3) < 0.8$ "

Impact of temporal decorrelation on PolInSAR height retrieval

Fig : Theoretical relative percentage error as a function of deccorrelation magnitude, for both estimated forest height and extinction coefficient based on the RVoG model, and using a multiplicative real factor gamma_t to simulate decorrelation. The reference extinction coefficient has been set to 0.06 Np (typical value at P-band) ambiguity height to 30m, whereas the targeted forest heights (10, 20 and 30m) are respectively represented in red, orange and dark green

Use of MIPERS^{4D} : inputs & outputs

Synthesis & perspectives

• Importance of experimental campaigns :

from the initial development to the performance analysis in spaceborne mission scenario

• Importance of EM modeling and the devolpement of EM models for data analysis and a better used of exp data in retrieval algorithms

• But beyond theses studies....not doubt that we will learn a lot with BIOMASS P-band data, over forested lands but also on many over landscapes and fields of research !

Synthesis & perspectives

• Importance of experimental campaigns :

from the initial development to the performance analysis in spaceborne mission scenario

• Importance of EM modeling and the devolpement of EM models for data analysis and a better used of exp data in retrieval algorithms

• But beyond theses studies....not doubt that we will learn a lot with BIOMASS P-band data, over forested lands but also on many over landscapes and fields of research !

Merci de votre attention